SIBERIA

Relational Geographies of Planetary Urbanization and the Question of Alter-Urbanization

URBAN THEORY LAB RESEARCH PRACTICUM

Hernán Bianchi Benguria & Amanda Miller
IS SIBERIA THE TRANSNATIONAL CORPORATION?
Siberia—Russia’s hinterland—historically supported the building of empire. This continues as the interests of an intricate network of corporate power capitalizes and re-articulates prior rounds of industrialization.
Nikolay Urvantsev, geologist, discovers coal and nickel ore deposits on the Taimyr Peninsula.

1930

Ufa electrolytic nickel plant and mine in Russia.

Zapolyarye Health Resort.

1932-1926

Soviet nickel combine is built in Monchegorsk.

March 1: First Copper-Nickel Matte Produced

March 10: First High Grade Matte Produced

Pechenganickel mining and Metallurgical Combine built by Inco in formerly Finnish Territory.

1938-1941

First Converter Matte Produced

1942

Corporate + Politics

USSR Established

1935-1936

Narilsk Founded

1940

USSR Council Resolution on Building the Norilsk Combine
Russian Ruble Exchange Rate, 1993-2016

Lipovskii Field Reserves Exhausted

Norilsk Nickel spins off gold-mining assets: Polyus Gold Created
Completed 2013, Norilsk Nickel Bugdainskoye Exploration Site Developed
Ongoing, Norilsk Nickel Extraction Exploration Site: Maslovskoye Deposit

Basket: Amur Minerals, Kun-Manie Project
Ongoing, Norilsk Nickel Extraction Area Exploration Site: Syrasadasinskaya Deposit
Norilsk Nickel Extraction Exploration Site: Talnakh Ore Field

Basket: Norilsk Nickel Extraction Exploration Sites:
Bystrinskoye & Bystrinskoye-Shirinskoye [Cu-Fe-Au] Developed

Talnakh Concentrator Upgrade, First Stage

1993: Norilsk Nickel Chita Project

1995: Norilsk Nickel Chita Project

1997: Norilsk Nickel Chita Project

2001: Norilsk Nickel Chita Project

2004: Norilsk Nickel Chita Project

2006: Norilsk Nickel Chita Project

2008: Norilsk Nickel Chita Project

2009: Norilsk Nickel Chita Project

2010: Norilsk Nickel Chita Project

2012: Norilsk Nickel Chita Project

2014: Norilsk Nickel Chita Project

2015: Norilsk Nickel Chita Project

Norilsk Nickel Chita Project

1993: August 5: Swift Acquires Controlling Shares

1995: November: Uneximbank became holder of RAO Norilsk Nickel

1997: June 30: State Concern for Non-Ferrous Metal Production

2000: Norilsk Nickel Becomes Joint-Stock Company (RAO)

2004: December 4: Resolution State Concern for Non-Ferrous Metals Production Norilsk Nickel

2006: July 1: MMC Norilsk Nickel holds 99.999% of shares

2008: ADR Authorization increased to max. 40% of shares

2010: June: The Bank of New York Mellon issues ADR shares for MMC Norilsk Nickel

2012: Bugdainskoye Molybdenum Project is put on hold for three years due to low market prices

2014: Renovations to Zapolyarye Health Resort
We critique the corporate urbanization project because it is driven by development stemming from the corporation’s own need for self-preservation through capital accumulation, unchecked and without regard to degradation of the environment, health and societal well-being.
Emancipation from Corporate Monopoly:
Three interrelated and dependent scales—challenging the establishment via global client demands for accountability, territorial economic diversification and increasing localized workforce mobility—with the long term goals being social mobilization and de-intensification.
NORILSK NICKEL

World Production

<table>
<thead>
<tr>
<th>Product</th>
<th>Ni Content</th>
<th>World Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni Cathodes</td>
<td>99.9%</td>
<td>1st</td>
</tr>
<tr>
<td>Ni Briquettes</td>
<td>99.8%</td>
<td>2nd</td>
</tr>
<tr>
<td>Ni Sulfate</td>
<td>22%</td>
<td>3rd</td>
</tr>
<tr>
<td>Ni Hydroxide</td>
<td>62%</td>
<td>4th</td>
</tr>
<tr>
<td>Ni Hydroxide Carbonate</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>Ammonium Sulfate</td>
<td>16%</td>
<td></td>
</tr>
</tbody>
</table>

Ni Sulfide

- Easier and Cheaper to Extract
- Deeper Deposits
- Open Cut or Underground Mining
- Easy Separation through Flotation
- Dominant Production Today
- Reserves Depleting Fast

Ni Laterite

- Difficult and Expensive to Extract
- Shallow Deposits of Oxide
- Open Cut Mining Only
- Needs High Pressure Leaching
- Increasing Future Production
- More Environmental Degradation

END USE
- Architecture, Building & Construction
- Automotive Industry
- Chemical, Pharmaceutical & Petrochemical Industries
- Design, Fabrication & Welding
- Electronics
- Energy & Power
- Food & Beverage Industry
- Medical Applications
- Heavy Transportation Industry
- Water Industry